AN IDENTITY FOR ELLIPTIC EQUATIONS WITH APPLICATIONS

BY C. A. SWANSON(1)

1. Introduction. An elementary identity involving a linear elliptic partial differential operator L and its associated hermitian form will be used to obtain new comparison theorems, oscillation theorems, and lower bounds for eigenvalues. Comparison theorems will be obtained for both subsolutions and complex-valued solutions in unbounded domains of Euclidean space, generalizing earlier results of Hartman and Wintner [4], Protter [8], and the author [11], [12]. Oscillation theorems of Kreith's type [6] will be extended to (i) unbounded domains; (ii) non-self-adjoint operators; and (iii) subsolutions.

Lower bounds for the eigenvalues of L arise naturally from the basic identity in the case of bounded domains, and are extended to unbounded domains when the coefficients of L satisfy suitable conditions. The form of the lower bounds is the same as that obtained by Protter and Weinberger [9], [10] for bounded domains.

2. The main lemma. The linear elliptic differential operator L defined by

(1)
$$Lv = \sum_{i,j=1}^{n} D_i(A_{ij}D_jv) + 2\sum_{i=1}^{n} B_iD_iv + Cv$$

will be considered on unbounded domains R in n-dimensional Euclidean space E^n . The boundary P of R is supposed to have a piecewise continuous unit normal vector at each point. As usual, points in E^n are denoted by $x = (x_1, x_2, ..., x_n)$ and differentiation with respect to x_i is denoted by D_i , i = 1, 2, ..., n. The coefficients A_{ij} , B_i , and C are assumed to be real and continuous in $R \cup P$ and the matrix (A_{ij}) positive definite in R (ellipticity condition). The domain $\mathfrak{D}_L = \mathfrak{D}_L(R)$ of L is defined to be the set of all complex-valued functions $v \in C^1(R \cup P)$ such that all derivatives of v involved in Lv exist and are continuous at every point in R.

Let T_a denote the *n*-disk $\{x \in E^n : |x-x_0| < a\}$ and let S_a denote the bounding (n-1)-sphere, where x_0 is a fixed point in E^n . Define

(2)
$$R_a = R \cap T_a, \quad P_a = P \cap T_a, \quad C_a = R \cap S_a.$$

Clearly there exists a positive number a_0 such that R_a is a bounded domain with boundary $P_a \cup C_a$ for all $a \ge a_0$.

Received by the editors July 3, 1967.

⁽¹⁾ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under grant AF-AFOSR-379-67.

Let Q[z] be the hermitian form in n+1 variables $z_1, z_2, \ldots, z_{n+1}$ defined by

(3)
$$Q[z] = \sum_{i,j=1}^{n} A_{ij} z_i \bar{z}_j - \sum_{i=1}^{n} B_i (z_i \bar{z}_{n+1} + z_{n+1} \bar{z}_i) + G|z_{n+1}|^2$$

where G is any continuous function in R satisfying the inequality

$$(4) G \det (A_{ij}) \geq \sum_{i=1}^{n} B_i B_i^*,$$

 B_i^* denoting the cofactor of $-B_i$ in the matrix associated with Q[z]. Condition (4) is known to be necessary and sufficient for Q[z] to be positive semidefinite [2], [12]. Let M_a be the quadratic functional defined by

$$M_a[u] = \int_{R_a} F[u] dx,$$

where

(6)
$$F[u] = \sum_{i,j} A_{ij} D_i u D_j \overline{u} - 2 \operatorname{Re} \left(u \sum_i B_i D_i \overline{u} \right) + (G - C) |u|^2.$$

Define $M[u] = \lim_{a \to \infty} M_a[u]$ (whenever the limit exists). The domain $\mathfrak{D}_M = \mathfrak{D}_M(R)$ of M is defined to be the set of all complex-valued functions $u \in C^1(R \cup P)$ such that M[u] exists and u vanishes on P.

Define

$$[u,v]_a = \int_{C_a} u \sum_{i,j} A_{ij} n_i D_j v \, ds,$$

where (n_i) denotes the unit normal to C_a , and define

(8)
$$[u, v] = \lim_{a \to \infty} [u, v]_a,$$

whenever the limit on the right side exists. The notation M[u; R] will be used for M[u] and [u, v; R] will be used for [u, v] in §5 when different domains are under consideration.

An L-subsolution (-supersolution) is a real-valued function $v \in \mathfrak{D}_L(R)$ which satisfies $Lv \leq 0$ ($Lv \geq 0$) at every point in R.

The following are extensions of results in [12] to subsolutions and supersolutions, and to complex-valued functions $u \in \mathfrak{D}_M(R)$.

LEMMA 1. For every $u \in C^1(R)$ and every real $v \in \mathfrak{D}_L(R)$ which does not vanish in R, the following identity is valid at each point in R:

(9)
$$\sum_{i,j} A_{ij} X_i \overline{X}_j - 2 \operatorname{Re} \left(u \sum_i B_i \overline{X}_i \right) + G |u|^2 + \sum_i D_i (|u|^2 Y_i) = F[u] + |u|^2 v^{-1} L v,$$

where

$$X_i = vD_i(u/v), \qquad Y_i = v^{-1} \sum_{j=1}^n A_{ij}D_jv, \qquad i = 1, 2, ..., n.$$

The proof is a direct calculation similar to that given in [12].

THEOREM 1. If there exists $u \in \mathfrak{D}_M(R)$ not identically zero such that M[u] < 0, then there does not exist an L-subsolution (-supersolution) v satisfying $[|u|^2/v, v] \ge 0$ which is positive (negative) everywhere in $R \cup P$. In particular, every real solution of Lv = 0 satisfying $[|u|^2/v, v] \ge 0$ must vanish at some point of $R \cup P$. In the self-adjoint case $B_i = 0$, i = 1, 2, ..., n, and G = 0, the same conclusions are valid when the hypothesis M[u] < 0 is weakened to $M[u] \le 0$.

Proof. Suppose to the contrary that there exists such a positive L-subsolution. Then integration of (9) over R_a yields

(10)
$$\int_{R_a} F[u] dx \ge \int_{R_a} \sum_i D_i(|u|^2 Y_i) dx$$

since the first three terms on the left side of (9) constitute a positive semidefinite form by the hypothesis (4). Since u=0 on P_a , by the definition of \mathfrak{D}_M , it follows from Green's formula that the right side of (10) is equal to

$$\int_{P_a \cup C_a} \sum_i |u|^2 n_i Y_i ds = \int_{C_a} \frac{|u|^2}{v} \sum_{i,j} A_{ij} n_i D_j v ds = [|u|^2 / v, v]_a.$$

Thus (7), (10), and the hypothesis $[|u|^2/v, v] \ge 0$ imply that

$$M[u] = \lim_{a \to \infty} \int_{R_a} F[u] dx \ge 0.$$

The contradiction proves that a positive L-subsolution satisfying $[|u|^2/v, v] \ge 0$ cannot exist. The analogous statement for a negative L-supersolution v follows from the fact that -v would then be a positive L-subsolution.

To prove the second statement of Theorem 1, suppose to the contrary that there exists a real solution $v \neq 0$ in $R \cup P$. Then v would be either a positive L-subsolution or a negative L-supersolution in $R \cup P$.

The proof in the self-adjoint case is similar to that given in [12, p. 281] and will be omitted

We remark that the condition $[|u|^2/v, v] \ge 0$ of Theorem 1 is a mild "boundary condition at ∞ " generalizing the usual condition $v \ne 0$ on the boundary of bounded domains.

3. Lower bounds for eigenvalues. Let \mathfrak{D} be the Hilbert space $\mathscr{L}^2(R)$, with inner product $\langle u, v \rangle = \int_R u(x)\overline{v}(x) \, dx$ and norm $||u|| = \langle u, u \rangle^{1/2}$. Let \mathfrak{D} be the set of all complex-valued functions $u \in \mathfrak{D}_L \cap \mathfrak{D}$ such that u vanishes on P. In this section the elliptic operator (1), with domain \mathfrak{D} , is assumed to have the self-adjoint form

$$Lv = \sum_{i,j} D_i(A_{ij}D_jv) - Cv,$$

under the conditions described below (1). In the case of the Schrödinger operator $-L = -\Delta + C(x)$, it is well-known [1], [3, p. 146] that the lower part of the spectrum contains only eigenvalues of finite multiplicity if C(x) is bounded from below.

In the self-adjoint elliptic case, an assumption on the coefficients A_{ij} is needed as well.

Let $A^+(x)$ denote the largest eigenvalue of $(A_{ij}(x))$ and define

$$\alpha(r) = \max_{1 \le |x| \le r} A^{+}(x),$$

$$\alpha_{0}(r) = \max \left[\alpha(1), \max_{1 \le |x| \le r} |x|^{-2} A^{+}(x) \right],$$

which are nondecreasing functions of r. The following assumptions are special cases of those given by Ikebe and Kato [5].

Assumptions. (i) C(x) is bounded from below;

(ii)
$$\int_1^\infty \left[\alpha(r)\alpha_0(r)\right]^{-1/2} = \infty.$$

It follows in particular from (i) and (ii) that the conditions $u \in \mathfrak{H}$, $Lu \in \mathfrak{H}$ imply that [u, u] = 0 [5].

Our purpose is to obtain a useful lower bound for the eigenvalues (if any) of -L. In the case of bounded domains, Protter and Weinberger [10] recently obtained results of this type by using a general form of the maximum principle. It will be shown here in the case of unbounded domains that a lower bound is available as an easy consequence of Lemma 1.

THEOREM 2. Let λ be the lowest eigenvalue and u be an associated normalized eigenfunction of the problem $-Lu = \lambda u$, $u \in \mathfrak{D}$. If v is any function in \mathfrak{D}_L such that v(x) > 0 for $x \in R \cup P$ and $\lfloor |u|^2/v, v \rfloor \ge 0$, then

(11)
$$\lambda \ge \inf_{x \in R} \left[-Lv(x)/v(x) \right].$$

Proof. With $B_i = 0$, i = 1, 2, ..., n and G = 0, integration of (9) over R_a yields

(12)
$$M_a[u] + \int_{R_a} |u|^2 v^{-1} L v \ dx \ge \int_{R_a} \sum_i D_i(|u|^2 Y_i) \ dx$$

where the positive-definiteness of (A_{ij}) has been taken into account. Since u=0 on P_a , it follows from Green's formula that

$$M_a[u] = -\int_{R_a} \bar{u} Lu \, dx + [u, u]_a$$
$$= \lambda \int_{R_a} |u|^2 \, dx + [u, u]_a.$$

However, $\lim [u, u]_a = 0$ $(a \to \infty)$ is a general consequence of $u \in \mathfrak{F}$ and $Lu \in \mathfrak{F}$ under the above assumptions [5], and therefore

$$M[u] = \lim_{a \to \infty} M_a[u] = \lambda ||u||^2 = \lambda.$$

As in the proof of Theorem 1, the right member of (12) has the limit $[|u|^2/v, v]$ as $a \to \infty$, which is nonnegative by hypothesis. Thus

$$\lambda + \int_{\mathbb{R}} |u|^2 v^{-1} L v \ dx \ge 0,$$

which implies (11).

In the bounded case, the condition $[|u|^2/v, v] \ge 0$ is vacuous and Theorem 2 reduces to a well-known result [9]. However, the proof given here is especially easy. We remark that the extra condition $[|u|^2/v, v] \ge 0$ in the unbounded case is a condition on the asymptotic behavior of v as $|x| \to \infty$; it is roughly equivalent to the usual hypotheses for bounded domains that u=0 on the boundary, v>0 in $R \cup P$, and $v \in C^1(R \cup P)$. In the case of the Schrödinger operator $-\Delta + C(x)$, it is known [3, p. 179] that $|u(x)| < Ke^{-\mu|x|}$, where K and μ are constants, for every eigenfunction u, and hence various exponential functions can serve as the test functions v. As an easy example, consider the one-dimensional harmonic oscillator problem

$$-\frac{d^2u}{dx^2} + x^2u = \lambda u, \qquad 0 \le x < \infty,$$

$$u(0) = 0.$$

The test function $v = \exp(-x^2/2)$ yields the lower bound 1 whereas the exact lowest eigenvalue is known to be 3.

4. Comparison theorems. Consider, in addition to (1), a second elliptic operator l defined by

(13)
$$lu = \sum_{i,j=1}^{n} D_i(a_{ij}D_ju) + 2\sum_{i=1}^{n} b_iD_iu + cu$$

in which the coefficients satisfy the same conditions as the coefficients in (1). In addition to (5) consider the quadratic functional defined by

$$m_a[u; Q] = \int_{Q \cap T_a} \left[\sum_{i,j} a_{ij} D_i u D_j \bar{u} - 2 \operatorname{Re} \left(u \sum_i b_i D_i \bar{u} \right) - c |u|^2 \right] dx$$

for every subdomain $Q \subseteq R$, and let $m[u; Q] = \lim m_a[u; Q]$ $(a \to \infty)$. The domain $\mathfrak{D}_m(Q)$ of m is the analogue of $\mathfrak{D}_M(Q)$ (defined in §2). The *variation* of L relative to the domain Q is defined as V[u; Q] = m[u; Q] - M[u; Q], that is

$$V[u; Q] = \int_{Q} \left[\sum_{i,j} (a_{ij} - A_{ij}) D_{i} u D_{j} \bar{u} - 2 \operatorname{Re} \left\{ u \sum_{i} (b_{i} - B_{i}) D_{i} \bar{u} \right\} + (C - c - G) |u|^{2} \right] dx,$$

with domain $\mathfrak{D}_{V}(Q) = \mathfrak{D}_{m}(Q) \cap \mathfrak{D}_{M}(Q)$.

The analogues of (7), (8) for the operator l relative to the domain Q are

(15)
$$\{u, v; Q\}_a = \int_{Q \cap S_a} \sum_{i,j} a_{ij} n_i \operatorname{Re}(uD_j \overline{v}) ds;$$

(16)
$$\{u, v; Q\} = \lim_{a \to \infty} \{u, v; Q\}_a.$$

When Q = R is the only domain under consideration, the abbreviations V[u], $\{u, v\}$ will be used for V[u; R], $\{u, v; R\}$, respectively.

The following comparison theorems of Sturm's type are easy extensions of those

in [12] to L-subsolutions (-supersolutions) and to complex-valued solutions of lu=0.

THEOREM 3. Suppose G is a continuous function in R satisfying the inequality (4). If there exists a nontrivial solution $u \in \mathfrak{D}_V(R)$ of |u| = 0 such that $\{u, u\} \leq 0$ and V[u] > 0 then there does not exist an L-subsolution (-supersolution) which is positive (negative) everywhere in $R \cup P$ and satisfies $[|u|^2/v, v] \geq 0$. In particular, every real solution of Lv = 0 satisfying $[|u|^2/v, v] \geq 0$ must vanish at some point of $R \cup P$. The same conclusions hold if the hypotheses V[u] > 0, $[|u|^2/v, v] \geq 0$ are replaced by $V[u] \geq 0$, $[|u|^2/v, v] > 0$, respectively.

THEOREM 4. With G as in Theorem 3, if there exists a positive l-supersolution $u \in \mathfrak{D}_V(R)$ such that $\{u, u\} \leq 0$ and V[u] > 0, then the conclusions of Theorem 3 are valid.

THEOREM 5 (SELF-ADJOINT CASE). Suppose $b_i = B_i = 0$, i = 1, 2, ..., n in (1) and (13) and G = 0. If there exists either (i) a nontrivial complex-valued solution $u \in \mathfrak{D}_V(R)$ of lu = 0, or (ii) a positive l-supersolution $u \in \mathfrak{D}_V(R)$, such that $\{u, u\} \leq 0$ and $V[u] \geq 0$, then an L-subsolution (-supersolution) v satisfying $[|u|^2/v, v] \geq 0$ cannot be everywhere positive (negative) in $R \cup P$. In particular, every real solution of Lv = 0 satisfying $[|u|^2/v, v] \geq 0$ must vanish at some point of $R \cup P$.

Proof of Theorem 3. Since u=0 on P_a , it follows from Green's formula that

(17)
$$m_a[u] = -\int_{R_a} \operatorname{Re} (u l \overline{u}) dx + \{u, u\}_a.$$

Since lu=0 and l has real-valued coefficients, also $l\bar{u}=0$. Since $\{u,u\} \le 0$, we obtain in the limit $a \to \infty$ that $m[u] \le 0$. The hypothesis V[u] > 0 is equivalent to M[u] < m[u]. Hence M[u] < 0 and Theorem 1 shows an L-subsolution (-supersolution) cannot be everywhere positive (negative) in $R \cup P$ under the hypothesis $[|u|^2/v, v] > 0$. The second statement of Theorem 3 also follows from Theorem 1. The last statement follows upon obvious modifications of the inequalities.

If u is a positive l-supersolution in R such that $\{u, u\} \le 0$, it follows again from [17] that $m[u] \le 0$. The proof of Theorem 4 is then completed in the same way as that of Theorem 3. The proof of Theorem 5 follows similarly from the statement in Theorem 1 relative to the self-adjoint case.

It follows from (14) by partial integration that

$$V[u; Q] = \int_{Q} \left[\sum_{i,j} (a_{ij} - A_{ij}) D_{i} u D_{j} \overline{u} + \delta |u|^{2} \right] dx + \Omega(Q),$$

where

$$\delta = \sum_{i=1}^n D_i(b_i - B_i) + C - c - G,$$

and

$$\Omega(Q) = \lim_{a \to \infty} \int_{Q \cap S_a} \sum_{i} (B_i - b_i) |u|^2 n_i \, ds,$$

whenever the limit exists.

L is called a strict Sturmian majorant of l in Q when the following conditions are fulfilled: (i) $(a_{ij}-A_{ij})$ is positive semidefinite and $\delta \ge 0$ in Q; (ii) $\Omega(Q) \ge 0$; and (iii) either $\delta > 0$ at some point in Q or $(a_{ij}-A_{ij})$ is positive definite and $c \ne 0$ at some point. A function defined in Q is said to be of class $C^{2,1}(Q)$ when all of its second partial derivatives exist and are Lipschitzian in Q.

THEOREM 6. Suppose that L is a strict Sturmian majorant of l and that all the coefficients a_{ij} involved in l are of class $C^{2,1}(R)$. If there exists a nontrivial solution $u \in \mathfrak{D}_{V}(R)$ of |u|=0 such that $\{u,u\} \leq 0$, then no L-subsolution (-supersolution) v satisfying $[|u|^{2}/v,v] \geq 0$ can be everywhere positive (negative) in $R \cup P$. In particular, every real solution of Lv=0 satisfying $[|u|^{2}/v,v] \geq 0$ must vanish at some point of $R \cup P$.

THEOREM 7 (SELF-ADJOINT CASE). Suppose $b_i = B_i = 0$, i = 1, 2, ..., n in (1) and (13), G = 0, $C \ge c$, and $(a_{ij} - A_{ij})$ is positive semidefinite in $R \cup P$. If there exists either (i) a nontrivial complex-valued solution $u \in \mathfrak{D}_v(R)$ of u = 0, or (ii) a positive $u \in \mathfrak{D}_v(R)$, such that $u \in \mathfrak{D}_v(R)$, such that $u \in \mathfrak{D}_v(R)$ is then the conclusion of Theorem 6 is valid.

Since the pointwise conditions G=0, $C \ge c$, and $(a_{ij}-A_{ij})$ positive semidefinite obviously imply that $V[u] \ge 0$, Theorem 7 is an immediate consequence of Theorem 5. The fact that the hypotheses of Theorem 6 imply V[u] > 0 was demonstrated in [12, p. 283], and consequently the conclusion of Theorem 6 follows from Theorems 3 and 4.

In the special case of the Schrödinger operator $-l = -\Delta + c(x)$ with c(x) bounded from below in R, the hypothesis $\{u, u\} \le 0$ of Theorems 5 and 7 can be replaced by $u \in \mathfrak{F}$ and $lu \in \mathfrak{F}$ since these conditions imply that $\{u, u\} = 0$ [3, p. 56]. In the self-adjoint elliptic case, the same statement holds under quite general conditions on the coefficients, e.g. those stated prior to Theorem 2, as shown by Ikebe and Kato [5]. Also, the conclusion of Theorem 7 is valid even if (A_{ij}) is only positive semidefinite provided L is a strict Sturmian majorant of l and all the coefficients a_{ij} are of class $C^{2,1}(R)$ [12, p. 283].

5. Oscillation theorems. In [6] Kreith obtained oscillation theorems for self-adjoint elliptic equations of the form Lv=0 in the case that one variable x_n is separable. He considered the case of bounded domains for which part of the boundary is singular. Here we shall obtain oscillation theorems of a general nature on unbounded domains by appealing to the comparison Theorems 3-7.

Let T'_a denote the complement of T_a in E^n . A function u is said to be oscillatory in R at ∞ , or simply oscillatory in R, whenever u has a zero in $R \cap T'_a$ for all a>0.

A domain (not necessarily bounded) $Q \subset R$ is called a *nodal domain* of a function u iff u = 0 on ∂Q and $\{u, u; Q\} \leq 0$. If Q is bounded, the latter condition is understood to be void, and the definition reduces to the standard definition of a nodal domain. If -l is the Schrödinger operator with potential c(x) bounded from below, sufficient

conditions for Q to be a nodal domain of $u \in D_1(Q)$ are u = 0 on ∂Q , $u \in \mathfrak{H}$, and $u \in \mathfrak{H}$ [3, p. 56]. A function u is said to have the *nodal property* in R whenever u has a nodal domain $Q \subseteq R \cap T'_a$ for all a > 0.

The following results are immediate consequences of Theorems 3-7.

THEOREM 8. Suppose G is a continuous function in R satisfying (4). Suppose there exists either (i) a nontrivial complex-valued solution u of lu=0, or (ii) a positive l-supersolution u, with the nodal property in R such that V[u;Q]>0 for every nodal domain Q. Then every real solution of Lv=0 is oscillatory in R provided $[|u|^2/v, v; Q] \ge 0$ for every Q. If the nodal domains are all bounded, every solution of Lv=0 is oscillatory in R. In the self-adjoint case $b_i=B_i=0$, $i=1,2,\ldots,n$, the same conclusions hold under the weaker condition $V[u;Q]\ge 0$ for every nodal domain Q.

Theorem 9. Suppose that L is a strict Sturmian majorant of l and that all the coefficients involved in l are of class $C^{2,1}(R)$. If there exists a nontrivial complex-valued solution of lu=0 with the nodal property in R, then every real solution of Lv=0 is oscillatory in R provided $\lfloor |u|^2/v, v; Q \rfloor \ge 0$ for every nodal domain Q. If the nodal domains are all bounded, every solution of Lv=0 is oscillatory in R. In the self-adjoint case $b_i=B_i=0$, $i=1,2,\ldots,n$, the same conclusions hold under the weaker hypotheses G=0, $C\ge c$, and $(a_{ij}-A_{ij})$ positive semidefinite in $R\cup P$.

Kreith has shown [6] that equations of the form

(18)
$$D_n[a(x_n)D_nu] + \sum_{i,j=1}^{n-1} D_i[a_{ij}(\bar{x})D_ju] + c(x_n)u = 0, \quad \bar{x} = (x_1, x_2, \dots, x_{n-1}),$$

have bounded nodal domains in the form of cylinders, under suitable hypotheses, when R is a bounded domain with an (n-1)-dimensional singular boundary. We shall show that the analogous construction for unbounded domains is valid provided R is limit cylindrical, i.e. contains an infinitely long cylinder. Without loss of generality we can assume that R contains a cylinder of the form

$$G \times \{x_n : 0 \leq x_n < \infty\},\$$

where G is a bounded (n-1)-dimensional domain.

Let μ be the smallest eigenvalue of the boundary problem

(19)
$$-\sum_{i,j=1}^{n-1} D_i[a_{ij}(\bar{x})D_j\phi] = \mu\phi \quad \text{in } G,$$
$$\phi = 0 \quad \text{on } \partial G.$$

THEOREM 10. If there exists a positive number b such that

(20)
$$\int_{h}^{\infty} \frac{dt}{a(t)} = \infty \quad and \quad \int_{h}^{\infty} \left[c(t) - \mu \right] dt = \infty,$$

then equation (18) has a solution u with the nodal property in R. If $V[u; Q] \ge 0$ for every nodal domain Q, every solution of Lv=0 is oscillatory in R. In particular,

every solution of the self-adjoint equation Lv=0 is oscillatory provided $C \ge c$ and $(a_{ij}-A_{ij})$ is positive semidefinite in $R \cup P$.

Proof. The hypotheses (20) imply that the ordinary differential equation

$$D_n[a(x_n)D_nw] + [c(x_n) - \mu]w = 0$$

is oscillatory at $x_n = \infty$ on account of well-known theorems of Leighton [7] and Wintner [13]. Let w be a solution with zeros at $x_n = \delta_1, \delta_2, \ldots, \delta_m, \ldots$, where $\delta_m \uparrow \infty$. If ϕ is an eigenfunction of (19) corresponding to the eigenvalue μ , then the function u defined by $u(x) = w(x_n)\phi(\bar{x})$ is a solution of (18) by direct calculation, with nodal domains in the form of cylinders

$$G_m = G \times \{x_n : \delta_m < x_n < \delta_{m+1}\}, \qquad m = 1, 2, \ldots$$

Thus u has a nodal domain $G_m \subseteq R \cap T'_a$ for all a > 0. In fact, given a > 0, choose m large enough so that $\delta_m \ge a$. Then $x \in G_m$ implies $|x| \ge |x_n| > a$ so $x \in T'_a$. Hence (18) has a solution u with the nodal property. The second statement of Theorem 10 follows from Theorem 8 and the last statement follows from Theorem 9.

REFERENCES

- 1. K. O. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. 109 (1934), 465-487.
 - 2. F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea, New York, 1959.
- 3. I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Davey, New York, 1965.
- 4. Philip Hartman and Aurel Wintner, On a comparison theorem for self-adjoint partial differential equations of elliptic type, Proc. Amer. Math. Soc. 6 (1955), 862-865.
- 5. Teruo Ikebe and Tosio Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92.
- 6. Kurt Kreith, Oscillation theorems for elliptic equations, Proc. Amer. Math. Soc. 15 (1964), 341-344.
- 7. Walter Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57-62; On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37-47.
- 8. M. H. Protter, A comparison theorem for elliptic equations, Proc. Amer. Math. Soc. 10 (1959), 296-299.
- 9. ——, Lower bounds for the first eigenvalue of elliptic equations, Ann. of Math. 71 (1960), 423-444.
- 10. M. H. Protter and H. F. Weinberger, On the spectrum of general second order operators, Bull. Amer. Math. Soc. 72 (1966), 251-255.
- 11. C. A. Swanson, A comparison theorem for elliptic differential equations, Proc. Amer. Math. Soc. 17 (1966), 611-616.
- 12. ——, Comparison theorems for elliptic equations on unbounded domains, Trans. Amer. Math. Soc. 126 (1967), 278-285.
 - 13. Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117.

University of British Columbia, Vancouver, B. C., Canada